هموپرسیتین و بیماری قلبی - عروقی

پروانه یاپری

چکیده:
هموپرسیتین اسیدامینه غیر پروتئینی حاوی کوگر است. همپر هموپرسیتینی در نوبت بیماری‌های的心ی، تنش دهه‌ای اختلال در متابولیسم اسیدامینه کرک دار است که در اثر کمبود ویتامین‌ها (فولات، B۱۲ و B۶) با نقش ویتامینی بوجود می‌آید. شواهد اپیدمیولوژیک تشویق می‌دهد که همپر هموپرسیتین دارد. همپر هموپرسیتینی عامل خطر مستقل است افزایش دیباخته‌ی این بیماری داره. همپر هموپرسیتینی عامل خطر مستقل است افزایش دیباخته‌ی این بیماری داره. یافته‌های دریافتی این ویتامین‌ها به صورت مکمل با افزودن این ویتامین‌ها به مواد غذایی مصرفی می‌تواند به طریق بسیار قابلیت کاهش خطر هموپرسیتین خون و کاهش خطر بیماری‌های قلبی - عروقی را داشته باشد.

کلید واژه‌ها: هموپرسیتین، بیماری قلبی - عروقی، CHD، فولات، B۱۲ و B۶، ویتامین

*عضو هیئت علمی بهداشت دانشکده پرستاری و مامایی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران
مقدمه:
نتایج مطالعات مختلف نشان می‌دهد که هیپر‌موسیستین‌های بطور کلی عامل خطر بیماری‌های عروقی و خصوصاً بیماری‌های قلبی عروقی می‌باشند. غلظت هموسیستین باعث می‌شود که در این میان نواحی آنزیمی و کمبود ویتامین‌های B, B12 و FOLATE امید نشاند. بهترین دارو سطح هموسیستین پلاسما بطور معکوس با سطح این ویتامین‌ها در پلاسما ارتباط دارد. هیپر‌موسیستین‌های عامل خطر مستقل بیماری‌های قلبی- عروقی شناخته شده است (1).

با توجه به ارتباط بین سطح سرمی هموسیستین و وضعیت ویتامین‌های مذکور در بدن، استفاده از مکمل‌های افزایش دریافت این ویتامین‌ها می‌تواند به عنوان پایه‌ای در جهت کاهش خطر بیماری‌های قلبی- عروقی بکار رود.

متاپولیسم هموسیستین:
هموسیستین اسید آمینه غیر پروتئینی کوگردار، محصول متابولیسم متوینین می‌باشد که در موارد غذایی وجود ندارد و تنها می‌توان آن متوینین رژیم غذایی است (2). غلظت پلاسما هموسیستین بسیار کم حداکثر 10 میکرومول در لیتر است. مکانیسم خروج هموسیستین از سلول سطح هموسیستین درون سلولی را پایین نگه می‌دارد و هموسیستین اضافی به پلاسما وارد می‌شود. در واقع با خروج هموسیستین اضافی، سلول از اثرات سایتوکسیک و مخرب هموسیستین

راه‌پيگ از یاده هموسیستین اضافی در سطح پلاسما موجب آسیب‌های عروقی می‌شود (1, 2). بطور کلی متاپولیسم هموسیستین شامل دو مرحله است:
1- مسیر ری متابولیسم هموسیستین
2- مسیر ترانس سولفوراسایویون هموسیستین
در مسیر ترانس سولفوراسایویون هموسیستین تبدیل به سیستاتئونین می‌شود که این واکنش به کمک آنزیم سیستاتئونین β سنتاز و واکنش به GLP یا همان ضریب پیروکسیمال است. در مسیر ری متابولیسم، هموسیستین اساساً به کمک فولات و آنزیم متوینین سنتاز که کوفاکتور آن متوینین کربالامین است ب متوینین تبدیل می‌شود. متوینین توسط آنزیم بیتالین - هموسیستین مثب ترانسفراز از بین می‌شود.

آنزیم‌های شرکت کننده متاپولیسم هموسیستین:
1- متوینین سنتاز
2- متوینین آدنوزیل ترانسفراز
3- مثب ترانسفراز‌های متعدد
4- آدنوزیل هموسیستیناز
5- سیستاتئونین ب سنتاز
6- سیستاتئونین ب لیاز
7- مثب ترانسفراز‌های فولات رودکار

(*) ملاحظه شود که در بیماران مبتلا به بیماری قلبی- عروقی، آنزیم‌های ارائه‌دهنده متاپولیسم هموسیستین کمتر از سطح خون مصرف می‌شود. (2) ملاحظه شود که در بیماران مبتلا به بیماری قلبی- عروقی، آنزیم‌های ارائه‌دهنده متاپولیسم هموسیستین کمتر از سطح خون مصرف می‌شود.

(*) ملاحظه شود که در بیماران مبتلا به بیماری قلبی- عروقی، آنزیم‌های ارائه‌دهنده متاپولیسم هموسیستین کمتر از سطح خون مصرف می‌شود.
و موارد هپر‌موسیستین‌های شدید

налای از نتایج هموزیکوت در همان‌های کد نشاند در مسیر سنتر آنزیم‌های مورد نیاز
در متابولیسم هموسیستین است. در جنین
ولایت فعالیت آنزیم به این مسئله نسبت
داده می‌شود (۴).

با توجه به اینکه فعالیت آنزیم‌های شرکت
کننده در متابولیسم هموسیستین وابسته
به ویتامین های ب۱۲، ب۶ و فولات می‌باشد،
دریافت کافی از این ویتامین‌ها در تواده در
متابولیسم هموسیستین نقش مؤثری
داشته باشد. آنزیم میتیل‌سنتراهیدروفولات
ردوکتاز دارای FAD و همان فلورین آدنین
دهنده نوکلئوتید به عنوان ریشه پرورشیک
است، احتمال دارد وضعیت ویتامین B۶
روی فعالیت این آنزیم اثر گذارد. فعالیت همیث
بنابراین برخوردار است. میتیل
شتراهیدروفولات عامل انتقال مولکول به
موسیستین است. ویتامین B۶ به شکل
میتیل کوبالامین در فعالیت آنزیم میتوئین
سنتز و B۱۲ به شکل فسفات پیرودوسکال
در فعالیت آنزیم سیستاتینوئین β سنتز
دخالت دارد (۴).

در بررسی‌های بر روی ۸۸۸۸ زن و مرد سالم
میانال‌سوزی میزان ایمنی همبستگی معنی‌دار
بین سطح هموسیستین و سطوح ویتامین
های ب۱۲ و فولات بلافاصله مشاهده شد. در
و واقع متوئین سطح فولات و ویتامین B۱۲
همراه با بالاترین سطح هموسیستین در

یکی دیگر از نقاچی‌هایی که باید در
کد کردن آنزیم میتیل‌سنتراهیدروفولات
ردکتاز است. همان گونه است که در نقص
آنزیمی در سنترهماسی باشد که در سنتر
ویتامین B۶ میتیل شرکت می‌کند. جهش
هایی که منجر به کم‌کوش شدید فعالیت این
آنزیمها می‌شود. نتایج نشان می‌دهند فعالیت
آنزیم جهش‌پذیر و سنگین میتوئین شتراهیدروفولات
ردکتاز ۵ درصد کمتر از آنزیم نرمال
است. این آنزیم جهش‌پذیر به حصر
در باشد. علل ناشی از فشار کل جامعه و ۱۷ درصد
بیماران با بیماری کرونی تأثیر شده وجود
پلاسما بوده است. همچنین مشخص شد که اثرات اختصاصی متفاوتی بیولوژیکی وابسته به جنس بر روی سطح هموسیستئین در زنان، از پارامترهای همودینامیکی همبستگی بدنی و پارامترهای همودینامیکی همبستگی نشان داده است (۱). شواهد اپیدمیولوژیکی نشان می‌دهد که هیپر-هموسیستئین خفیف نیز با افزایش همراه است (۷).

اختیار سطح بالایی هموسیستئین غیر ناشتا به عوامل عامل خطر مستقل تمام علائم (CHD) مرگ و میر ناشی از شناسختی شده است. در مطالعه فرامینگهام بر روی سالماندن در یک پیکر ۱۰ ساله خطر نسبی تطبیق نیافته سطح هموسیستئین غیر ناشتا (برابر با بالاتر از ۱۴۶ میکرومول در لیتر) برای ۲۷/۸ و ۲۷/۱۷/۲ به ترتیب برابر تمام علائم مرگ و میر و مرگ و میر ناشی از شناسختی شده است در این پرسسی CHD سایر متفاوتی مستقل شامل سن، جنس دیابت شیرین، سیگار کشیدن، فشار خون سیستولیک، کلسترول تودال، و خون کراتین یوده است. خطر نسبی بعد از تطبیق دادن متغیرهای ناممکن معنی دار باقی ماند و به ۱/۷۶ و ۱/۷۵ به همان ترتیب قبل رسید. افزایش سطح هموسیستئین با پشرفت شناسختی، کل سواردار مرگ و سایر خطرات شناسختی از CHD (۸).

در مطالعات اولیه بر روی بیماران با تفاوت آزمایی در متابولیسم هموسیستئین، تکرار جهابهای عروقی، موارد مکرر تروریزهای وریدی و سیر بیش رویده آترواسکلروز مشاهده گردید. شیوع هیپر-هموسیستئین شدید در جمعیت هنرمند که از این مقدار درصد آن مربوط به هیپر-هموسیستئین شدید است هیپر-هموسیستئین مسئول ۱۰ تا ۲۰ درصد بیماری کرونا و ۳۰ درصد بیماری عروقی و ۶۰ درصد بیماری عروقی میوئیتی است. بین سطح فولات و همودینامیک نواحی ارتباط معکوس وجود دارد. با دریافت و تیمینهای فوق خصوصاً فولات و سطح هموسیستئین پلاسما کاهش می‌یابد.

به‌سیاستی از کارآزمایی می‌تواند انجام شود بر روی جمعیت‌های نشان می‌دهد که هیپر-هموسیستئین متوسط عامل خطر مستقل آترواسکلروز بوده و قابل مقایسه با سایر عوامل خطر آترواسکلروز (سیگار کشیدن، هیپر-کلسترول و پر فشاری خون) می‌باشد. در بررسی مقطعی بر
پاتوزن بیماری عروقی:

تئوری آترودینک بودن هموسیستین
در مطالعات متعددی توسط Dr. Mc Cully مطرح شده است. بر طبق این تئوری، آترودینک یک مشکل ثانویه‌ای است که می‌تواند ناشی از اثرات کمبود فولات، بیورودسیسین با نقایص آنزیمی در انسوله‌های مؤثر بر متابولیسم هموسیستین به همه سایر عوامل خطر از جمله سیگار کشیدن، مصرف داروها، بالارفتن سن موجب می‌شود. عوامل هورمونی مانند هپتاروکین، پاسکین، دیابت شیرین و نارسایی کلیه باشد (۱). بر روی دو هفت مورد موجود هیپرموسیستین و بروتئین C فعال در اثر هم افزایی در شروع حوادث تروموگلیک دارند. نتایج مطالعه بر روی مدل‌های حیوانی معلوم کرده است که اثرات افسیش هموسیستین متعدد است و بر روی ساختارهای عروقی و سیستم انعقاد خون اثر می‌گذارد (۷).

درمان:

هموسیستین‌وری ناشی از کمبود آنزیم سیستینوتیپین بنا است، در برخی افراد به‌درد بالای ویتامین B۶ بیش از می‌دهد و این درمان از نظر بالینی معنی‌دار شناخته شده است. در افرادی که بیش از درمان خوبی به یک نمی‌دهند، رژیم محدود از مئوتین با مکمل سیستین مناسب است. لیست های جانشینی و منابع غذایی محدود از مئوتین برای این دسته از بیماران وجود دارد (۹).

تجویز بکلی‌های نیز سطح هموسیستین پلاسما را کاهش می‌دهد اما سطح مئوتین را بالا می‌برد.

در اختلالات مسیره زی سیستین‌وری مصرف مکمل فولات، بایستی مورد واقع شود. نتایج مطالعه ۱۰ می‌گذارد که در کاهش سطح هموسیستین و کاهش مارک ومیریشی از بیماری‌های قلبی- عروقی می‌تواند باشد.
References:

نتیجه‌گیری:
هموسرستین‌های ناشی از اختلال در متابولیسم میتوئین می‌باشند که می‌توانند در اکثر نقص‌های آنزیم‌یا کمبودهای ویتامین‌های سایر عوامل محیطی ایجاد شود. همی‌سرستین‌های عامل خطر مستقل بیماری‌های قلبی- عروقی و در کل بیماری‌های عروقی است. استفاده از مکمل‌های ویتامین می‌تواند خطرات ناشی از همی‌سرستین‌های کاهش دهد.

Homocysteine and cardiovascular disease

Abstract:

Hyperhomocysteinemia is a condition which, in the absence of kidney disease, indicates a disturbed sulfur amino acid metabolism, either because of vitamin deficiency (folate, B_{12} and B_6) or a genetic defect. Epidemiologic evidence suggests that mild Hyperhomocysteinemia is associated with increased risk of atherosclerotic disease and stroke. Hyperhomocysteinemia is an independent risk factor for CHD. Vitamin therapy with the above vitamins can reduce homocysteine level efficiently.

Key Words: Hyperhomocysteinemia, Cardiovascular, CHD. Folate, Vitamin B_{12}, Vitamin B_6, Stroke.